On the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces
نویسندگان
چکیده
We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a nonreflexive space we characterize maximality using a “enlarged” version of the duality mapping, introduced previously by Gossez. 2000Mathematics Subject Classification: 47H05, 47H14, 49J52, 47N10.
منابع مشابه
A proximal point method in nonreflexive Banach spaces
We propose an inexact version of the proximal point method and study its properties in nonreflexive Banach spaces which are duals of separable Banach spaces, both for the problem of minimizing convex functions and of finding zeroes of maximal monotone operators. By using surjectivity results for enlargements of maximal monotone operators, we prove existence of the iterates in both cases. Then w...
متن کاملMaximal monotonicity, conjugation and the duality product in non-reflexive Banach spaces
Maximal monotone operators on a Banach space into its dual can be represented by convex functions bounded below by the duality product. It is natural to ask under which conditions a convex function represents a maximal monotone operator. A satisfactory answer, in the context of reflexive Banach spaces, has been obtained some years ago. Recently, a partial result on non-reflexive Banach spaces w...
متن کاملClosedness type regularity conditions for surjectivity results involving the sum of two maximal monotone operators
In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator S(· + p) + T (·), where p ∈ X and S and T are maximal monotone operators on the reflexive Banach space X . The...
متن کاملOn surjectivity of some classes of generalized monotone operators
We present results for the existence of solutions for variational inequalities given by generalized monotone operators. As a consequence we establish surjectivity, and we obtain, in particular, results for the existence of zeroes of some class of set-valued operators. Furthermore, by strengthening the continuity assumption on the operator, we deduce its surjectivity without any monotonicity ass...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کامل